首页> 外文OA文献 >Automated facial coding: validation of basic emotions and FACS AUs in FaceReader
【2h】

Automated facial coding: validation of basic emotions and FACS AUs in FaceReader

机译:自动面部编码:在FaceReader中验证基本情绪和FACS AU

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

In this study, we validated automated facial coding (AFC) software—FaceReader (Noldus, 2014)—on 2 publicly available and objective datasets of human expressions of basic emotions. We present the matching scores (accuracy) for recognition of facial expressions and the Facial Action Coding System (FACS) index of agreement. In 2005, matching scores of 89% were reported for FaceReader. However, previous research used a version of FaceReader that implemented older algorithms (version 1.0) and did not contain FACS classifiers. In this study, we tested the newest version (6.0). FaceReader recognized 88% of the target emotional labels in the Warsaw Set of Emotional Facial Expression Pictures (WSEFEP) and Amsterdam Dynamic Facial Expression Set (ADFES). The software reached a FACS index of agreement of 0.67 on average in both datasets. The results of this validation test are meaningful only in relation to human performance rates for both basic emotion recognition and FACS coding. The human emotions recognition for the 2 datasets was 85%, therefore FaceReader is as good at recognizing emotions as humans. To receive FACS certification, a human coder must reach an agreement of 0.70 with the master coding of the final test. Even though FaceReader did not attain this score, action units (AUs) 1, 2, 4, 5, 6, 9, 12, 15, and 25 might be used with high accuracy. We believe that FaceReader has proven to be a reliable indicator of basic emotions in the past decade and has a potential to become similarly robust with FACS.
机译:在这项研究中,我们验证了自动面部表情编码(AFC)软件FaceReader(Noldus,2014年)在2种可公开获得的基本情感人类表情的客观数据集中的有效性。我们提供面部表情识别的匹配分数(准确性)和协议的面部动作编码系统(FACS)指数。 2005年,FaceReader的匹配分数为89%。但是,以前的研究使用的FaceReader版本实现了较旧的算法(1.0版),并且不包含FACS分类器。在本研究中,我们测试了最新版本(6.0)。 FaceReader在华沙情绪面部表情图片集(WSEFEP)和阿姆斯特丹动态面部表情集(ADFES)中识别了88%的目标情感标签。在两个数据集中,该软件的FACS一致性指数平均为0.67。此验证测试的结果仅对于基本情感识别和FACS编码的人类绩效而言才有意义。这两个数据集的人类情感识别率为85%,因此FaceReader与人类一样擅长识别情感。要获得FACS认证,人类编码员必须与最终测试的主编码达成0.70的协议。即使FaceReader未达到此分数,也可以高精度使用动作单位(AU)1、2、4、5、6、9、12、15和25。我们认为,FaceReader在过去十年中已被证明是基本情绪的可靠指标,并且有可能在FACS中变得同样强大。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号